
Database System Concepts
S E V E N T H E D I T I O N

Abraham Silberschatz
Henry F. Korth
S. Sudarshan

DATABASE
SYSTEM CONCEPTS

S I X T H E D I T I O N

Abraham Silberschatz
Yale University

Henry F. Korth
Lehigh University

S. Sudarshan
Indian Institute of Technology, Bombay

TM

silberschatz6e_fm_i-ii.indd Page i 12/3/09 2:51:50 PM user /Users/user/Desktop/Temp Work/00November_2009/24:11:09/VYN/silberschatz

S E V E N T H E D I T I O N

DATABASE SYSTEM CONCEPTS, SEVENTH EDITION

Published by McGraw-Hill Education, 2 Penn Plaza, New York, NY 10121. Copyright © 2020 by
McGraw-Hill Education. All rights reserved. Printed in the United States of America. Previous
editions © 2011, 2006, and 2002. No part of this publication may be reproduced or distributed in
any form or by any means, or stored in a database or retrieval system, without the prior written
consent of McGraw-Hill Education, including, but not limited to, in any network or other
electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers
outside the United States.

This book is printed on acid-free paper.

1 2 3 4 5 6 7 8 9 LCR 21 20 19

ISBN 978-0-07-802215-9 (bound edition)
MHID 0-07-802215-0 (bound edition)
ISBN 978-1-260-51504-6 (loose-leaf edition)
MHID 1-260-51504-4 (loose-leaf edition)

Portfolio Manager: Thomas Scaife Ph.D.
Product Developers: Tina Bower & Megan Platt
Marketing Manager: Shannon O’Donnell
Content Project Managers: Laura Bies & Sandra Schnee
Buyer: Susan K. Culbertson
Design: Egzon Shaqiri
Content Licensing Specialists: Shawntel Schmitt & Lorraine Buczek
Cover Image: © Pavel Nesvadba/Shutterstock
Compositor: Aptara®, Inc.

All credits appearing on page or at the end of the book are considered to be an extension
of the copyright page.

Library of Congress Cataloging-in-Publication Data

Names: Silberschatz, Abraham, author. | Korth, Henry F., author. | Sudarshan, S., author.
Title: Database system concepts/Abraham Silberschatz, Yale University, Henry F. Korth,
 Lehigh University, S. Sudarshan, Indian Institute of Technology, Bombay.
Description: Seventh edition. | New York, NY: McGraw-Hill, [2020] | Includes bibliographical
 references.
Identifiers: LCCN 2018060474 | ISBN 9780078022159 (alk. paper) | ISBN 0078022150 (alk. paper)
Subjects: LCSH: Database management.
Classification: LCC QA76.9.D3 S5637 2020 | DDC 005.74—dc23 LC record available at
 https://lccn.loc.gov/2018060474

The Internet addresses listed in the text were accurate at the time of publication. The inclusion of
a website does not indicate an endorsement by the authors or McGraw-Hill Education, and
McGraw-Hill Education does not guarantee the accuracy of the information presented at these sites.

mheducation.com/highered

To meine schatzi, Valerie
her parents and my dear friends, Steve and Mary Anne
and in memory of my parents, Joseph and Vera

Avi Silberschatz

To my wife, Joan
my children, Abigail and Joseph
my mother, Frances
and in memory of my father, Henry

Hank Korth

To my wife, Sita
my children, Madhur and Advaith
and my mother, Indira

S. Sudarshan

About the Authors

Abraham (Avi) Silberschatz is the Sidney J. Weinberg Professor of Computer Science

at Yale University. Prior to coming to Yale in 2003, he was the vice president of the

Information Sciences Research Center at Bell Labs. He previously held an endowed

professorship at the University of Texas at Austin, where he taught until 1993. Silber-

schatz is a fellow of the ACM, a fellow of the IEEE, and a member of the Connecticut

Academy of Science and Engineering. He received the 2002 IEEE Taylor L. Booth Ed-

ucation Award, the 1998 ACM Karl V. Karlstrom Outstanding Educator Award, and

the 1997 ACM SIGMOD Contribution Award. Silberschatz was awarded the Bell Lab-

oratories President’s Award three times, in 1998, 1999 and 2004. His writings have

appeared in numerous journals, conferences, workshops, and book chapters. He has

obtained over 48 patents and over 24 grants. He is an author of the textbook Operating

System Concepts.

Henry F. (Hank) Korth is a Professor of Computer Science and Engineering and co-

director of the Computer Science and Business program at Lehigh University. Prior to

joining Lehigh, he was director of Database Principles Research at Bell Labs, a vice

president of Panasonic Technologies, an associate professor at the University of Texas

at Austin, and a research staff member at IBM Research. Korth is a fellow of the ACM

and of the IEEE and a winner of the 10-Year Award at the VLDB Conference. His numer-

ous research publications span a wide range of aspects of database systems, including

transaction management in parallel and distributed systems, real-time systems, query

processing, and the influence on these areas from modern computing architectures.

Most recently, his research has addressed issues in the application of blockchains in

enterprise databases.

S. Sudarshan is currently the Subrao M. Nilekani Chair Professor at the Indian Insti-

tute of Technology, Bombay. He received his Ph.D. at the University of Wisconsin in

1992, and he was a member of the technical staff at Bell Labs before joining IIT Bom-

bay. Sudarshan is a fellow of the ACM. His research spans several areas of database

systems, with a focus on query processing and query optimization. His paper on key-

word search in databases published in 2002 won the IEEE ICDE Most Influential Paper

Award in 2012, and his work on main-memory databases received the Bell Laborato-

ries President’s Award in 1999. His current research areas include testing and grading

of SQL queries, optimization of database applications by rewriting of imperative code,

and query optimization for parallel databases. He has published over 100 papers and

obtained 15 patents.

Contents

Chapter 1 Introduction
1.1 Database-System Applications 1
1.2 Purpose of Database Systems 5
1.3 View of Data 8
1.4 Database Languages 13
1.5 Database Design 17
1.6 Database Engine 18

1.7 Database and Application Architecture 21
1.8 Database Users and Administrators 24
1.9 History of Database Systems 25

1.10 Summary 29
Exercises 31
Further Reading 33

PART ONE RELATIONAL LANGUAGES

Chapter 2 Introduction to the Relational Model
2.1 Structure of Relational Databases 37
2.2 Database Schema 41
2.3 Keys 43
2.4 Schema Diagrams 46
2.5 Relational Query Languages 47

2.6 The Relational Algebra 48
2.7 Summary 58

Exercises 60
Further Reading 63

Chapter 3 Introduction to SQL
3.1 Overview of the SQL Query Language 65
3.2 SQL Data Definition 66
3.3 Basic Structure of SQL Queries 71
3.4 Additional Basic Operations 79
3.5 Set Operations 85
3.6 Null Values 89

3.7 Aggregate Functions 91
3.8 Nested Subqueries 98
3.9 Modification of the Database 108

3.10 Summary 114
Exercises 115
Further Reading 124

vii

viii Contents

Chapter 4 Intermediate SQL

4.1 Join Expressions 125

4.2 Views 137

4.3 Transactions 143

4.4 Integrity Constraints 145

4.5 SQL Data Types and Schemas 153

4.6 Index Definition in SQL 164

4.7 Authorization 165

4.8 Summary 173

Exercises 176

Further Reading 180

Chapter 5 Advanced SQL

5.1 Accessing SQL from a Programming

Language 183

5.2 Functions and Procedures 198

5.3 Triggers 206

5.4 Recursive Queries 213

5.5 Advanced Aggregation Features 219

5.6 Summary 231

Exercises 232

Further Reading 238

PART TWO DATABASE DESIGN

Chapter 6 Database Design Using the E-R Model

6.1 Overview of the Design Process 241

6.2 The Entity-Relationship Model 244

6.3 Complex Attributes 249

6.4 Mapping Cardinalities 252

6.5 Primary Key 256

6.6 Removing Redundant Attributes in Entity

Sets 261

6.7 Reducing E-R Diagrams to Relational

Schemas 264

6.8 Extended E-R Features 271

6.9 Entity-Relationship Design Issues 279

6.10 Alternative Notations for Modeling

Data 285

6.11 Other Aspects of Database Design 291

6.12 Summary 292

Exercises 294

Further Reading 300

Chapter 7 Relational Database Design

7.1 Features of Good Relational Designs 303

7.2 Decomposition Using Functional

Dependencies 308

7.3 Normal Forms 313

7.4 Functional-Dependency Theory 320

7.5 Algorithms for Decomposition Using

Functional Dependencies 330

7.6 Decomposition Using Multivalued

Dependencies 336

7.7 More Normal Forms 341

7.8 Atomic Domains and First Normal

Form 342

7.9 Database-Design Process 343

7.10 Modeling Temporal Data 347

7.11 Summary 351

Exercises 353

Further Reading 360

Contents ix

PART THREE APPLICATION DESIGN AND
DEVELOPMENT

Chapter 8 Complex Data Types
8.1 Semi-structured Data 365
8.2 Object Orientation 376
8.3 Textual Data 382
8.4 Spatial Data 387

8.5 Summary 394
Exercises 397
Further Reading 401

Chapter 9 Application Development
9.1 Application Programs and User

Interfaces 403
9.2 Web Fundamentals 405
9.3 Servlets 411
9.4 Alternative Server-Side Frameworks 416
9.5 Client-Side Code and Web Services 421
9.6 Application Architectures 429

9.7 Application Performance 434
9.8 Application Security 437
9.9 Encryption and Its Applications 447

9.10 Summary 453
Exercises 455
Further Reading 462

PART FOUR BIG DATA ANALYTICS

Chapter 10 Big Data
10.1 Motivation 467
10.2 Big Data Storage Systems 472
10.3 The MapReduce Paradigm 483
10.4 Beyond MapReduce: Algebraic

Operations 494

10.5 Streaming Data 500
10.6 Graph Databases 508
10.7 Summary 511

Exercises 513
Further Reading 516

Chapter 11 Data Analytics
11.1 Overview of Analytics 519
11.2 Data Warehousing 521
11.3 Online Analytical Processing 527
11.4 Data Mining 540

11.5 Summary 550
Exercises 552
Further Reading 555

x Contents

PART FIVE STORAGE MANAGEMENT AND
INDEXING

Chapter 12 Physical Storage Systems
12.1 Overview of Physical Storage Media 559
12.2 Storage Interfaces 562
12.3 Magnetic Disks 563
12.4 Flash Memory 567
12.5 RAID 570

12.6 Disk-Block Access 577
12.7 Summary 580

Exercises 582
Further Reading 584

Chapter 13 Data Storage Structures
13.1 Database Storage Architecture 587
13.2 File Organization 588
13.3 Organization of Records in Files 595
13.4 Data-Dictionary Storage 602
13.5 Database Buffer 604
13.6 Column-Oriented Storage 611

13.7 Storage Organization in Main-Memory
Databases 615

13.8 Summary 617
Exercises 619
Further Reading 621

Chapter 14 Indexing
14.1 Basic Concepts 623
14.2 Ordered Indices 625
14.3 B+-Tree Index Files 634
14.4 B+-Tree Extensions 650
14.5 Hash Indices 658
14.6 Multiple-Key Access 661
14.7 Creation of Indices 664

14.8 Write-Optimized Index Structures 665
14.9 Bitmap Indices 670

14.10 Indexing of Spatial and Temporal Data 672
14.11 Summary 677

Exercises 679
Further Reading 683

PART SIX QUERY PROCESSING AND
OPTIMIZATION

Chapter 15 Query Processing
15.1 Overview 689
15.2 Measures of Query Cost 692
15.3 Selection Operation 695
15.4 Sorting 701
15.5 Join Operation 704
15.6 Other Operations 719

15.7 Evaluation of Expressions 724
15.8 Query Processing in Memory 731
15.9 Summary 734

Exercises 736
Further Reading 740

Contents xi

Chapter 16 Query Optimization
16.1 Overview 743
16.2 Transformation of Relational

Expressions 747
16.3 Estimating Statistics of Expression

Results 757
16.4 Choice of Evaluation Plans 766

16.5 Materialized Views 778
16.6 Advanced Topics in Query

Optimization 783
16.7 Summary 787

Exercises 789
Further Reading 794

PART SEVEN TRANSACTION MANAGEMENT

Chapter 17 Transactions
17.1 Transaction Concept 799
17.2 A Simple Transaction Model 801
17.3 Storage Structure 804
17.4 Transaction Atomicity and Durability 805
17.5 Transaction Isolation 807
17.6 Serializability 812
17.7 Transaction Isolation and Atomicity 819

17.8 Transaction Isolation Levels 821
17.9 Implementation of Isolation Levels 823

17.10 Transactions as SQL Statements 826
17.11 Summary 828

Exercises 831
Further Reading 834

Chapter 18 Concurrency Control
18.1 Lock-Based Protocols 835
18.2 Deadlock Handling 849
18.3 Multiple Granularity 853
18.4 Insert Operations, Delete Operations, and

Predicate Reads 857
18.5 Timestamp-Based Protocols 861
18.6 Validation-Based Protocols 866
18.7 Multiversion Schemes 869

18.8 Snapshot Isolation 872
18.9 Weak Levels of Consistency in

Practice 880
18.10 Advanced Topics in Concurrency

Control 883
18.11 Summary 894

Exercises 899
Further Reading 904

Chapter 19 Recovery System
19.1 Failure Classification 907
19.2 Storage 908
19.3 Recovery and Atomicity 912
19.4 Recovery Algorithm 922
19.5 Buffer Management 926
19.6 Failure with Loss of Non-Volatile

Storage 930
19.7 High Availability Using Remote Backup

Systems 931

19.8 Early Lock Release and Logical Undo
Operations 935

19.9 ARIES 941
19.10 Recovery in Main-Memory Databases 947
19.11 Summary 948

Exercises 952
Further Reading 956

xii Contents

PART EIGHT PARALLEL AND DISTRIBUTED
DATABASES

Chapter 20 Database-System Architectures
20.1 Overview 961
20.2 Centralized Database Systems 962
20.3 Server System Architectures 963
20.4 Parallel Systems 970
20.5 Distributed Systems 986

20.6 Transaction Processing in Parallel and
Distributed Systems 989

20.7 Cloud-Based Services 990
20.8 Summary 995

Exercises 998
Further Reading 1001

Chapter 21 Parallel and Distributed Storage
21.1 Overview 1003
21.2 Data Partitioning 1004
21.3 Dealing with Skew in Partitioning 1007
21.4 Replication 1013
21.5 Parallel Indexing 1017

21.6 Distributed File Systems 1019
21.7 Parallel Key-Value Stores 1023
21.8 Summary 1032

Exercises 1033
Further Reading 1036

Chapter 22 Parallel and Distributed Query Processing
22.1 Overview 1039
22.2 Parallel Sort 1041
22.3 Parallel Join 1043
22.4 Other Operations 1048
22.5 Parallel Evaluation of Query Plans 1052
22.6 Query Processing on Shared-Memory

Architectures 1061

22.7 Query Optimization for Parallel
Execution 1064

22.8 Parallel Processing of Streaming Data 1070
22.9 Distributed Query Processing 1076

22.10 Summary 1086
Exercises 1089
Further Reading 1093

Chapter 23 Parallel and Distributed Transaction Processing
23.1 Distributed Transactions 1098
23.2 Commit Protocols 1100
23.3 Concurrency Control in Distributed

Databases 1111
23.4 Replication 1121
23.5 Extended Concurrency Control

Protocols 1129

23.6 Replication with Weak Degrees of
Consistency 1133

23.7 Coordinator Selection 1146
23.8 Consensus in Distributed Systems 1150
23.9 Summary 1162

Exercises 1165
Further Reading 1168

Contents xiii

PART NINE ADVANCED TOPICS

Chapter 24 Advanced Indexing Techniques

24.1 Bloom Filter 1175

24.2 Log-Structured Merge Tree and

Variants 1176

24.3 Bitmap Indices 1182

24.4 Indexing of Spatial Data 1186

24.5 Hash Indices 1190

24.6 Summary 1203

Exercises 1205

Further Reading 1206

Chapter 25 Advanced Application Development

25.1 Performance Tuning 1210

25.2 Performance Benchmarks 1230

25.3 Other Issues in Application

Development 1234

25.4 Standardization 1237

25.5 Distributed Directory Systems 1240

25.6 Summary 1243

Exercises 1245

Further Reading 1248

Chapter 26 Blockchain Databases

26.1 Overview 1252

26.2 Blockchain Properties 1254

26.3 Achieving Blockchain Properties via

Cryptographic Hash Functions 1259

26.4 Consensus 1263

26.5 Data Management in a Blockchain 1267

26.6 Smart Contracts 1269

26.7 Performance Enhancement 1274

26.8 Emerging Applications 1276

26.9 Summary 1279

Exercises 1280

Further Reading 1282

PART TEN APPENDIX A

Appendix A Detailed University Schema 1287

Index 1299

PART ELEVEN ONLINE CHAPTERS

Chapter 27 Formal Relational Query Languages

Chapter 28 Advanced Relational Database Design

Chapter 29 Object-Based Databases

Chapter 30 XML

Chapter 31 Information Retrieval

Chapter 32 PostgreSQL

Preface

Database management has evolved from a specialized computer application to a cen-
tral component of virtually all enterprises, and, as a result, knowledge about database
systems has become an essential part of an education in computer science. In this text,
we present the fundamental concepts of database management. These concepts include
aspects of database design, database languages, and database-system implementation.

This text is intended for a first course in databases at the junior or senior under-
graduate, or first-year graduate, level. In addition to basic material for a first course,
the text contains advanced material that can be used for course supplements, or as
introductory material for an advanced course.

We assume only a familiarity with basic data structures, computer organization,
and a high-level programming language such as Java, C, C++, or Python. We present
concepts as intuitive descriptions, many of which are based on our running example of
a university. Important theoretical results are covered, but formal proofs are omitted.
In place of proofs, figures and examples are used to suggest why a result is true. Formal
descriptions and proofs of theoretical results may be found in research papers and
advanced texts that are referenced in the bibliographical notes.

The fundamental concepts and algorithms covered in the book are often based
on those used in existing commercial or experimental database systems. Our aim is
to present these concepts and algorithms in a general setting that is not tied to one
particular database system, though we do provide references to specific systems where
appropriate.

In this, the seventh edition of Database System Concepts, we have retained the over-
all style of the prior editions while evolving the content and organization to reflect the
changes that are occurring in the way databases are designed, managed, and used. One
such major change is the extensive use of “Big Data” systems. We have also taken into
account trends in the teaching of database concepts and made adaptations to facilitate
these trends where appropriate.

xv

xvi Preface

Among the notable changes in this edition are:

• Extensive coverage of Big Data systems, from the user perspective (Chapter 10),
as well as from an internal perspective (Chapter 20 through Chapter 23), with
extensive additions and modifications compared to the sixth edition.

• A new chapter entitled “Blockchain Databases” (Chapter 26) that introduces
blockchain technology and its growing role in enterprise applications. An im-
portant focus in this chapter is the interaction between blockchain systems and
database systems.

• Updates to all chapters covering database internals (Chapter 12 through Chap-
ter 19) to reflect current-generation technology, such as solid-state disks, main-
memory databases, multi-core systems, and column-stores.

• Enhanced coverage of semi-structured data management using JSON, RDF, and
SPARQL (Section 8.1).

• Updated coverage of temporal data (in Section 7.10), data analytics (Chapter 11),
and advanced indexing techniques such as write-optimized indices (Section 14.8
and Section 24.2).

• Reorganization and update of chapters to better support courses with a significant
hands-on component (which we strongly recommend for any database course),
including use of current-generation application development tools and Big Data
systems such as Apache Hadoop and Spark.

These and other updates have arisen from the many comments and suggestions we
have received from readers of the sixth edition, our students at Yale University, Lehigh
University, and IIT Bombay, and our own observations and analyses of developments
in database technology.

Content of This Book

The text is organized in eleven major parts.

• Overview (Chapter 1). Chapter 1 provides a general overview of the nature and pur-
pose of database systems. We explain how the concept of a database system has
developed, what the common features of database systems are, what a database
system does for the user, and how a database system interfaces with operating
systems. We also introduce an example database application: a university organi-
zation consisting of multiple departments, instructors, students, and courses. This
application is used as a running example throughout the book. This chapter is
motivational, historical, and explanatory in nature.

Preface xvii

• Part 1: Relational Model and SQL (Chapter 2 through Chapter 5). Chapter 2 in-
troduces the relational model of data, covering basic concepts such as the struc-
ture of relational databases, database schemas, keys, schema diagrams, relational
query languages, relational operations, and the relational algebra. Chapter 3, Chap-
ter 4, and Chapter 5 focus on the most influential of the user-oriented relational
languages: SQL. The chapters in this part describe data manipulation: queries,
updates, insertions, and deletions, assuming a schema design has been provided.
Although data-definition syntax is covered in detail here, schema design issues are
deferred to Part 2.

• Part 2: Database Design (Chapter 6 and Chapter 7). Chapter 6 provides an
overview of the database-design process and a detailed description of the entity-
relationship data model. The entity-relationship data model provides a high-level
view of the issues in database design and of the problems encountered in capturing
the semantics of realistic applications within the constraints of a data model. UML
class-diagram notation is also covered in this chapter. Chapter 7 introduces rela-
tional database design. The theory of functional dependencies and normalization
is covered, with emphasis on the motivation and intuitive understanding of each
normal form. This chapter begins with an overview of relational design and relies
on an intuitive understanding of logical implication of functional dependencies.
This allows the concept of normalization to be introduced prior to full coverage of
functional-dependency theory, which is presented later in the chapter. Instructors
may choose to use only this initial coverage without loss of continuity. Instructors
covering the entire chapter will benefit from students having a good understand-
ing of normalization concepts to motivate them to learn some of the challenging
concepts of functional-dependency theory. The chapter ends with a section on
modeling of temporal data.

• Part 3: Application Design and Development (Chapter 8 and Chapter 9). Chapter
8 discusses several complex data types that are particularly important for appli-
cation design and development, including semi-structured data, object-based data,
textual data, and spatial data. Although the popularity of XML in a database con-
text has been diminishing, we retain an introduction to XML, while adding coverage
of JSON, RDF, and SPARQL. Chapter 9 discusses tools and technologies that are
used to build interactive web-based and mobile database applications. This chap-
ter includes detailed coverage on both the server side and the client side. Among
the topics covered are servlets, JSP, Django, JavaScript, and web services. Also
discussed are application architecture, object-relational mapping systems includ-
ing Hibernate and Django, performance (including caching using memcached and
Redis), and the unique challenges in ensuring web-application security.

• Part 4: Big Data Analytics (Chapter 10 and Chapter 11). Chapter 10 provides
an overview of large-scale data-analytic applications, with a focus on how those
applications place distinct demands on data management compared with the de-

xviii Preface

mands of traditional database applications. The chapter then discusses how those
demands are addressed. Among the topics covered are Big Data storage systems
including distributed file systems, key-value stores and NoSQL systems, MapRe-
duce, Apache Spark, streaming data, and graph databases. The connection of these
systems and concepts with database concepts introduced earlier is emphasized.
Chapter 11 discusses the structure and use of systems designed for large-scale data
analysis. After first explaining the concepts of data analytics, business intelligence,
and decision support, the chapter discusses the structure of a data warehouse and
the process of gathering data into a warehouse. The chapter next covers usage of
warehouse data in OLAP applications followed by a survey of data-mining algo-
rithms and techniques.

• Part 5: Storage Management and Indexing (Chapter 12 through Chapter 14). Chap-
ter 12 deals with storage devices and how the properties of those devices influ-
ence database physical organization and performance. Chapter 13 deals with data-
storage structures, including file organization and buffer management. A variety of
data-access techniques are presented in Chapter 14. Multilevel index-based access
is described, culminating in detailed coverage of B+-trees. The chapter then covers
index structures for applications where the B+-tree structure is less appropriate, in-
cluding write-optimized indices such as LSM trees and buffer trees, bitmap indices,
and the indexing of spatial data using k-d trees, quadtrees and R-trees.

• Part 6: Query Processing and Optimization (Chapter 15 and Chapter 16). Chap-
ter 15 and Chapter 16 address query-evaluation algorithms and query optimiza-
tion. Chapter 15 focuses on algorithms for the implementation of database opera-
tions, particularly the wide range of join algorithms, which are designed to work on
very large data that may not fit in main-memory. Query processing techniques for
main-memory databases are also covered in this chapter. Chapter 16 covers query
optimization, starting by showing how query plans can be transformed to other
equivalent plans by using transformation rules. The chapter then describes how
to generate estimates of query execution costs, and how to efficiently find query
execution plans with the lowest cost.

• Part 7: Transaction Management (Chapter 17 through Chapter 19). Chapter 17
focuses on the fundamentals of a transaction-processing system: atomicity, con-
sistency, isolation, and durability. It provides an overview of the methods used
to ensure these properties, including log-based recovery and concurrency control
using locking, timestamp-based techniques, and snapshot isolation. Courses re-
quiring only a survey of the transaction concept can use Chapter 17 on its own
without the other chapters in this part; those chapters provide significantly greater
depth. Chapter 18 focuses on concurrency control and presents several techniques
for ensuring serializability, including locking, timestamping, and optimistic (vali-
dation) techniques. Multiversion concurrency control techniques, including the
widely used snapshot isolation technique, and an extension of the technique that

Preface xix

guarantees serializability, are also covered. This chapter also includes discussion
of weak levels of consistency, concurrency on index structures, concurrency in
main-memory database systems, long-duration transactions, operation-level con-
currency, and real-time transaction processing. Chapter 19 covers the primary
techniques for ensuring correct transaction execution despite system crashes and
storage failures. These techniques include logs, checkpoints, and database dumps,
as well as high availability using remote backup systems. Recovery with early lock
release, and the widely used ARIES algorithm are also presented. This chapter in-
cludes discussion of recovery in main-memory database systems and the use of
NVRAM.

• Part 8: Parallel and Distributed Databases (Chapter 20 through Chapter 23).
Chapter 20 covers computer-system architecture, and describes the influence of
the underlying computer system on the database system. We discuss centralized
systems, client–server systems, parallel and distributed architectures, and cloud-
based systems in this chapter. The remaining three chapters in this part address
distinct aspects of parallel and distributed databases, with Chapter 21 covering
storage and indexing, Chapter 22 covering query processing, and Chapter 23 cov-
ering transaction management. Chapter 21 includes discussion of partitioning and
data skew, replication, parallel indexing, distributed file systems (including the
Hadoop file system), and parallel key-value stores. Chapter 22 includes discussion
of parallelism both among multiple queries and within a single query. It covers par-
allel and distributed sort and join, MapReduce, pipelining, the Volcano exchange-
operator model, thread-level parallelism, streaming data, and the optimization of
geographically distributed queries. Chapter 23 includes discussion of traditional
distributed consensus such as two-phase commit and more sophisticated solutions
including Paxos and Raft. It covers a variety of algorithms for distributed concur-
rency control, including replica management and weaker degrees of consistency.
The trade-offs implied by the CAP theorem are discussed along with the means of
detecting inconsistency using version vectors and Merkle trees.

• Part 9: Advanced Topics (Chapter 24 through Chapter 26). Chapter 24 expands
upon the coverage of indexing in Chapter 14 with detailed coverage of the LSM
tree and its variants, bitmap indices, spatial indexing, and dynamic hashing tech-
niques. Chapter 25 expands upon the coverage of Chapter 9 with a discussion of
performance tuning, benchmarking, testing, and migration from legacy systems,
standardization, and distributed directory systems. Chapter 26 looks at blockchain
technology from a database perspective. It describes blockchain data structures
and the use of cryptographic hash functions and public-key encryption to ensure
the blockchain properties of anonymity, irrefutability, and tamper resistance. It
describes and compares the distributed consensus algorithms used to ensure de-
centralization, including proof-of-work, proof-of-stake, and Byzantine consensus.
Much of the chapter focuses on the features that make blockchain an important
database concept, including the role of permisssioned blockchains, the encoding

xx Preface

of business logic and agreements in smart contracts, and interoperability across
blockchains. Techniques for achieving database-scale transaction-processing per-
formance are discussed. A final section surveys current and contemplated enter-
prise blockchain applications.

• Part 10: Appendix. Appendix A presents details of our university schema, including
the full schema, DDL, and all the tables.

• Part 11: Online Chapters (Chapter 27 through Chapter 32) available online at
db-book.com. We provide six chapters that cover material that is of historical
nature or is advanced; these chapters are available only online. Chapter 27 cov-
ers “pure” query languages: the tuple and domain relational calculus and Data-
log, which has a syntax modeled after the Prolog language. Chapter 28 covers
advanced topics in relational database design, including the theory of multivalued
dependencies and fourth normal form, as well as higher normal forms. Chapter
29 covers object-based databases and more complex data types such as array, and
multiset types, as well as tables that are not in 1NF. Chapter 30 expands on the cov-
erage in Chapter 8 of XML. Chapter 31 covers information retrieval, which deals
with querying of unstructured textual data. Chapter 32 provides an overview of the
PostgreSQL database system, and is targeted at courses focusing on database inter-
nals. The chapter is likely to be particularly useful for supporting student projects
that work with the open-source code base of the PostgreSQL database.

At the end of each chapter we provide references in a section titled Further Reading.
This section is intentionally abbreviated and provides references that allow students
to continue their study of the material covered in the chapter or to learn about new
developments in the area covered by the chapter. On occasion, the further reading
section includes original source papers that have become classics of which everyone
should be aware. Detailed bibliographical notes for each chapter are available online,
and provide references for readers who wish to go into further depth on any of the
topics covered in the chapter.

The Seventh Edition

The production of this seventh edition has been guided by the many comments and
suggestions we received concerning the earlier editions, by our own observations while
teaching at Yale University, Lehigh University, and IIT Bombay, and by our analysis of
the directions in which database technology is evolving.

We provided a list of the major new features of this edition earlier in this preface;
these include coverage of extensive coverage of Big Data, updates to all chapters to
reflect current generation hardware technology, semi-structured data management, ad-
vanced indexing techniques, and a new chapter on blockchain databases. Beyond these
major changes, we revised the material in each chapter, bringing the older material

Preface xxi

up-to-date, adding discussions on recent developments in database technology, and im-
proving descriptions of topics that students found difficult to understand. We have also
added new exercises and updated references.

For instructors who previously used the sixth edition, we list the more significant
changes below:

• Relational algebra has been moved into Chapter 2, to help students better under-
stand relational operations that form the basis of query languages such as SQL.
Deeper coverage of relational algebra also aids in understanding the algebraic op-
erators needed for discussion later of query processing and optimization. The two
variants of the relational calculus are now in an online chapter, since we believe
they are now of value only to more theoretically oriented courses, and can be omit-
ted by most database courses.

• The SQL chapters now include more details of database-system specific SQL vari-
ations, to aid students carrying out practical assignments. Connections between
SQL and the multiset relational algebra are also covered in more detail. Chapter
4 now covers all the material concerning joins, whereas previously natural join
was in the preceding chapter. Coverage of sequences used to generate unique key
values, and coverage of row-level security have also been added to this chapter.
Recent extensions to the JDBC API that are particularly useful are now covered in
Chapter 5; coverage of OLAP has been moved from this chapter to Chapter 11.

• Chapter 6 has been modified to cover E-R diagrams along with E-R concepts, in-
stead of first covering the concepts and then introducing E-R diagrams as was done
in earlier editions. We believe this will help students better comprehend the E-R
model.

• Chapter 7 now has improved coverage of temporal data modeling, including
SQL:2011 temporal database features.

• Chapter 8 is a new chapter that covers complex data types, including semi-
structured data, such as XML, JSON, RDF, and SPARQL, object-based data, textual
data, and spatial data. Object-based databases, XML, and information retrieval on
textual data were covered in detail in the sixth edition; these topics have been ab-
breviated and covered in Chapter 8, while the original chapters from the sixth
edition have now been made available online.

• Chapter 9 has been significantly updated to reflect modern application devel-
opment tools and techniques, including extended coverage of JavaScript and
JavaScript libraries for building dynamic web interfaces, application development
in Python using the Django framework, coverage of web services, and disconnec-
tion operations using HTML5. Object-relation mapping using Django has been
added, as also discussion of techniques for developing high-performance applica-
tions that can handle large transaction loads.

xxii Preface

• Chapter 10 is a new chapter on Big Data, covering Big Data concepts and tools
from a user perspective. Big Data storage systems, the MapReduce paradigm,
Apache Hadoop and Apache Spark, and streaming and graph databases are cov-
ered in this chapter. The goal is to enable readers to use Big Data systems, with
only a summary coverage of what happens behind the scenes. Big Data internals
are covered in detail in later chapters.

• The chapter on storage and file structure has been split into two chapters. Chap-
ter 12 which covers storage has been updated with new technology, including ex-
panded coverage of flash memory, column-oriented storage, and storage organiza-
tion in main-memory databases. Chapter 13, which covers data storage structures
has been expanded, and now covers details such as free-space maps, partitioning,
and most importantly column-oriented storage.

• Chapter 14 on indexing now covers write-optimized index structures including the
LSM tree and its variants, and the buffer tree, which are seeing increasing usage.
Spatial indices are now covered briefly in this chapter. More detailed coverage of
LSM trees and spatial indices is provided in Chapter 24, which covers advanced
indexing techniques. Bitmap indices are now covered in brief in Chapter 14, while
more detailed coverage has been moved to Chapter 24. Dynamic hashing tech-
niques have been moved into Chapter 24, since they are of limited practical im-
portance today.

• Chapter 15 on query processing has significantly expanded coverage of pipelining
in query processing, new material on query processing in main-memory, including
query compilation, as well as brief coverage of spatial joins. Chapter 16 on query
optimization has more examples of equivalence rules for operators such as outer
joins and aggregates, has updated material on statistics for cost estimation, an
improved presentation of the join-order optimization algorithm. Techniques for
decorrelating nested subqueries using semijoin and antijoin operations have also
been added.

• Chapter 18 on concurrency control has new material on concurrency control in
main-memory. Chapter 19 on recovery now gives more importance to high avail-
ability using remote backup systems.

• Our coverage of parallel and distributed databases has been completely revamped.
Because of the evolution of these two areas into a continuum from low-level paral-
lelism to geographically distributed systems, we now present these topics together.

° Chapter 20 on database architectures has been significantly updated from the
earlier edition, including new material on practical interconnection networks
like the tree-like (or fat-tree) architecture, and significantly expanded and up-
dated material on shared-memory architectures and cache coherency. There is
an entirely new section on cloud-based services, covering virtual machines and
containers, platform-as-a-service, software-as-a-service, and elasticity.

Preface xxiii

° Chapter 21 covers parallel and distributed storage; while a few parts of this
chapter were present in the sixth edition, such as partitioning techniques, ev-
erything else in this chapter is new.

° Chapter 22 covers parallel and distributed query processing. Again only a few
sections of this chapter, such as parallel algorithms for sorting, join, and a few
other relational operations, were present in the sixth edition, almost everything
else in this chapter is new.

° Chapter 23 covers parallel and distributed transaction processing. A few parts
of this chapter, such as the sections on 2PC, persistent messaging, and concur-
rency control in distributed databases, are new but almost everything else in
this chapter is new.

As in the sixth edition, we facilitate the following of our running example by listing
the database schema and the sample relation instances for our university database to-
gether in Appendix A as well as where they are used in the various regular chapters. In
addition, we provide, on our web site db-book.com, SQL data-definition statements for
the entire example, along with SQL statements to create our example relation instances.
This encourages students to run example queries directly on a database system and to
experiment with modifying those queries. All topics not listed above are updated from
the sixth edition, though their overall organization is relatively unchanged.

End of Chapter Material

Each chapter has a list of review terms, in addition to a summary, which can help
readers review key topics covered in the chapter.

As in the sixth edition, the exercises are divided into two sets: practice exercises
and exercises. The solutions for the practice exercises are publicly available on the web
site of the book. Students are encouraged to solve the practice exercises on their own
and later use the solutions on the web site to check their own solutions. Solutions to
the other exercises are available only to instructors (see “Instructor’s Note,” below, for
information on how to get the solutions).

Many chapters have a tools section at the end of the chapter that provides infor-
mation on software tools related to the topic of the chapter; some of these tools can
be used for laboratory exercises. SQL DDL and sample data for the university database
and other relations used in the exercises are available on the web site of the book and
can be used for laboratory exercises.

Instructor’s Note

It is possible to design courses by using various subsets of the chapters. Some of the
chapters can also be covered in an order different from their order in the book. We
outline some of the possibilities here:

xxiv Preface

• Chapter 5 (Advanced SQL). This chapter can be skipped or deferred to later with-
out loss of continuity. We expect most courses will cover at least Section 5.1.1 early,
as JDBC is likely to be a useful tool in student projects.

• Chapter 6 (E-R Model). This chapter can be covered ahead of Chapter 3, Chapter
4, and Chapter 5 if you so desire, since Chapter 6 does not have any dependency
on SQL. However, for courses with a programming emphasis, a richer variety of
laboratory exercises is possible after studying SQL, and we recommend that SQL
be covered before database design for such courses.

• Chapter 15 (Query Processing) and Chapter 16 (Query Optimization). These
chapters can be omitted from an introductory course without affecting coverage
of any other chapter.

• Part 7 (Transaction Management). Our coverage consists of an overview (Chapter
17) followed by chapters with details. You might choose to use Chapter 17 while
omitting Chapter 18 and Chapter 19, if you defer these latter chapters to an ad-
vanced course.

• Part 8 (Parallel and Distributed Databases). Our coverage consists of an overview
(Chapter 20), followed by chapters on the topics of storage, query processing,
and transactions. You might choose to use Chapter 20 while omitting Chapter 21
through Chapter 23 if you defer these latter chapters to an advanced course.

• Part 11 (Online chapters). Chapter 27 (Formal-Relational Query Languages). This
chapter can be covered immediately after Chapter 2, ahead of SQL. Alternatively,
this chapter may be omitted from an introductory course. The five other online
chapters (Advanced Relational Database Design, Object-Based Databases, XML,
Information Retrieval, and PostgreSQL) can be used as self-study material or omit-
ted from an introductory course.

Model course syllabi, based on the text, can be found on the web site of the book.

Web Site and Teaching Supplements

A web site for the book is available at the URL: db-book.com. The web site contains:

• Slides covering all the chapters of the book.

• Answers to the practice exercises.

• The six online chapters.

• Laboratory material, including SQL DDL and sample data for the university
schema and other relations used in exercises, and instructions for setting up and
using various database systems and tools.

• An up-to-date errata list.

Preface xxv

The following additional material is available only to faculty:

• An instructor’s manual containing solutions to all exercises in the book.

• A question bank containing extra exercises.

For more information about how to get a copy of the instructor’s manual and the

question bank, please send an email message to sem@mheducation.com. In the

United States, you may call 800-338-3987. The McGraw-Hill web site for this book

is www.mhhe.com/silberschatz.

Contacting Us

We have endeavored to eliminate typos, bugs, and the like from the text. But, as in new

releases of software, bugs almost surely remain; an up-to-date errata list is accessible

from the book’s web site. We would appreciate it if you would notify us of any errors

or omissions in the book that are not on the current list of errata.

We would be glad to receive suggestions on improvements to the book. We also

welcome any contributions to the book web site that could be of use to other read-

ers, such as programming exercises, project suggestions, online labs and tutorials, and

teaching tips.

Email should be addressed to db-book-authors@cs.yale.edu. Any other corre-

spondence should be sent to Avi Silberschatz, Department of Computer Science, Yale

University, 51 Prospect Street, P.O. Box 208285, New Haven, CT 06520-8285 USA.

Acknowledgments

Many people have helped us with this seventh edition, as well as with the previous six

editions from which it is derived, and we are indebted to all of them.

Seventh Edition

• Ioannis Alagiannis and Renata Borovica-Gajic for writing Chapter 32 on the

PostgreSQL database, which is available online. The chapter is a complete rewrite

of the PostgreSQL chapter in the 6th edition, which was authored by Anastasia

Ailamaki, Sailesh Krishnamurthy, Spiros Papadimitriou, Bianca Schroeder, Karl

Schnaitter, and Gavin Sherry.

• Judi Paige for her help in generating figures, presentation slides, and with handling

the copy-editing material.

• Mark Wogahn for making sure that the software to produce the book, including

LaTeX macros and fonts, worked properly.

xxvi Preface

• Sriram Srinivasan for discussions and feedback that have immensely benefited the
chapters on parallel and distributed databases.

• N. L. Sarda for his insightful feedback on the sixth edition, and on some sections
of the seventh edition.

• Bikash Chandra and Venkatesh Emani for their help with updates to the applica-
tion development chapter, including creation of sample code.

• Students at IIT Bombay, particularly Ashish Mithole, for their feedback on draft
versions of the chapters on parallel and distributed databases.

• Students at Yale, Lehigh, and IIT Bombay, for their comments on the sixth edition.

• Jeffrey Anthony, partner and CTO, Synaptic; and Lehigh students Corey Ca-
plan (now co-founder, Leavitt Innovations); Gregory Cheng; Timothy LaRowe;
and Aaron Rotem for comments and suggestions that have benefited the new
blockchain chapter.

Previous Editions

• Hakan Jakobsson (Oracle), for writing the chapter on the Oracle database sys-
tem in the sixth edition; Sriram Padmanabhan (IBM), for writing the chapter de-
scribing the IBM DB2 database system in the sixth edition; and Sameet Agarwal,
José A. Blakeley, Thierry D’Hers, Gerald Hinson, Dirk Myers, Vaqar Pirzada, Bill
Ramos, Balaji Rathakrishnan, Michael Rys, Florian Waas, and Michael Zwilling
for writing the chapter describing the Microsoft SQL Server database system in
the sixth edition; and in particular José Blakeley, who sadly is no longer amongst
us, for coordinating and editing the chapter; and César Galindo-Legaria, Goetz
Graefe, Kalen Delaney, and Thomas Casey for their contributions to the previous
edition of the Microsoft SQL Server chapter. These chapters, however, are not part
of the seventh edition.

• Anastasia Ailamaki, Sailesh Krishnamurthy, Spiros Papadimitriou, Bianca
Schroeder, Karl Schnaitter, and Gavin Sherry for writing the chapter on
PostgreSQL in the sixth edition.

• Daniel Abadi for reviewing the table of contents of the fifth edition and helping
with the new organization.

• Steve Dolins, University of Florida; Rolando Fernanez, George Washington Uni-
versity; Frantisek Franek, McMaster University; Latifur Khan, University of Texas
at Dallas; Sanjay Madria, Missouri University of Science and Technology; Aris
Ouksel, University of Illinois; and Richard Snodgrass, University of Waterloo; who
served as reviewers of the book and whose comments helped us greatly in formu-
lating the sixth edition.

Preface xxvii

• Judi Paige for her help in generating figures and presentation slides.

• Mark Wogahn for making sure that the software to produce the book, including
LaTeX macros and fonts, worked properly.

• N. L. Sarda for feedback that helped us improve several chapters. Vikram Pudi for
motivating us to replace the earlier bank schema; and Shetal Shah for feedback on
several chapters.

• Students at Yale, Lehigh, and IIT Bombay, for their comments on the fifth edition,
as well as on preprints of the sixth edition.

• Chen Li and Sharad Mehrotra for providing material on JDBC and security for the
fifth edition.

• Marilyn Turnamian and Nandprasad Joshi provided secretarial assistance for the
fifth edition, and Marilyn also prepared an early draft of the cover design for the
fifth edition.

• Lyn Dupré copyedited the third edition and Sara Strandtman edited the text of the
third edition.

• Nilesh Dalvi, Sumit Sanghai, Gaurav Bhalotia, Arvind Hulgeri K. V. Raghavan,
Prateek Kapadia, Sara Strandtman, Greg Speegle, and Dawn Bezviner helped to
prepare the instructor’s manual for earlier editions.

• The idea of using ships as part of the cover concept was originally suggested to us
by Bruce Stephan.

• The following people offered suggestions and comments for the fifth and earlier
editions of the book. R. B. Abhyankar, Hani Abu-Salem, Jamel R. Alsabbagh,
Raj Ashar, Don Batory, Phil Bernhard, Christian Breimann, Gavin M. Bierman,
Janek Bogucki, Haran Boral, Paul Bourgeois, Phil Bohannon, Robert Brazile, Yuri
Breitbart, Ramzi Bualuan, Michael Carey, Soumen Chakrabarti, Tom Chappell,
Zhengxin Chen, Y. C. Chin, Jan Chomicki, Laurens Damen, Prasanna Dhan-
dapani, Qin Ding, Valentin Dinu, J. Edwards, Christos Faloutsos, Homma Far-
ian, Alan Fekete, Frantisek Franek, Shashi Gadia, Hector Garcia-Molina, Goetz
Graefe, Jim Gray, Le Gruenwald, Eitan M. Gurari, William Hankley, Bruce
Hillyer, Ron Hitchens, Chad Hogg, Arvind Hulgeri, Yannis Ioannidis, Zheng Ji-
aping, Randy M. Kaplan, Graham J. L. Kemp, Rami Khouri, Hyoung-Joo Kim,
Won Kim, Henry Korth (father of Henry F.), Carol Kroll, Hae Choon Lee, Sang-
Won Lee, Irwin Levinstein, Mark Llewellyn, Gary Lindstrom, Ling Liu, Dave
Maier, Keith Marzullo, Marty Maskarinec, Fletcher Mattox, Sharad Mehrotra, Jim
Melton, Alberto Mendelzon, Ami Motro, Bhagirath Narahari, Yiu-Kai Dennis Ng,
Thanh-Duy Nguyen, Anil Nigam, Cyril Orji, Meral Ozsoyoglu, D. B. Phatak, Juan
Altmayer Pizzorno, Bruce Porter, Sunil Prabhakar, Jim Peterson, K. V. Raghavan,
Nahid Rahman, Rajarshi Rakshit, Krithi Ramamritham, Mike Reiter, Greg Ric-

xxviii Preface

cardi, Odinaldo Rodriguez, Mark Roth, Marek Rusinkiewicz, Michael Rys, Sunita
Sarawagi, N. L. Sarda, Patrick Schmid, Nikhil Sethi, S. Seshadri, Stewart Shen,
Shashi Shekhar, Amit Sheth, Max Smolens, Nandit Soparkar, Greg Speegle, Jeff
Storey, Dilys Thomas, Prem Thomas, Tim Wahls, Anita Whitehall, Christopher
Wilson, Marianne Winslett, Weining Zhang, and Liu Zhenming.

Personal Notes

Sudarshan would like to acknowledge his wife, Sita, for her love, patience, and support,
and children Madhur and Advaith for their love and joie de vivre. Hank would like to
acknowledge his wife, Joan, and his children, Abby and Joe, for their love and under-
standing. Avi would like to acknowledge Valerie for her love, patience, and support
during the revision of this book.

A. S.
H. F. K.
S. S.

CHAP T E R 1
Introduction

A database-management system (DBMS) is a collection of interrelated data and a set
of programs to access those data. The collection of data, usually referred to as the
database, contains information relevant to an enterprise. The primary goal of a DBMS
is to provide a way to store and retrieve database information that is both convenient
and efficient.

Database systems are designed to manage large bodies of information. Manage-
ment of data involves both defining structures for storage of information and provid-
ing mechanisms for the manipulation of information. In addition, the database system
must ensure the safety of the information stored, despite system crashes or attempts
at unauthorized access. If data are to be shared among several users, the system must
avoid possible anomalous results.

Because information is so important in most organizations, computer scientists
have developed a large body of concepts and techniques for managing data. These
concepts and techniques form the focus of this book. This chapter briefly introduces
the principles of database systems.

1.1 Database-System Applications

The earliest database systems arose in the 1960s in response to the computerized man-
agement of commercial data. Those earlier applications were relatively simple com-
pared to modern database applications. Modern applications include highly sophisti-
cated, worldwide enterprises.

All database applications, old and new, share important common elements. The
central aspect of the application is not a program performing some calculation, but
rather the data themselves. Today, some of the most valuable corporations are valuable
not because of their physical assets, but rather because of the information they own.
Imagine a bank without its data on accounts and customers or a social-network site
that loses the connections among its users. Such companies’ value would be almost
totally lost under such circumstances.

1

2 Chapter 1 Introduction

Database systems are used to manage collections of data that:

• are highly valuable,

• are relatively large, and

• are accessed by multiple users and applications, often at the same time.

The first database applications had only simple, precisely formatted, structured
data. Today, database applications may include data with complex relationships and a
more variable structure. As an example of an application with structured data, consider
a university’s records regarding courses, students, and course registration. The univer-
sity keeps the same type of information about each course: course-identifier, title, de-
partment, course number, etc., and similarly for students: student-identifier, name, ad-
dress, phone, etc. Course registration is a collection of pairs: one course identifier and
one student identifier. Information of this sort has a standard, repeating structure and
is representative of the type of database applications that go back to the 1960s. Con-
trast this simple university database application with a social-networking site. Users of
the site post varying types of information about themselves ranging from simple items
such as name or date of birth, to complex posts consisting of text, images, videos, and
links to other users. There is only a limited amount of common structure among these
data. Both of these applications, however, share the basic features of a database.

Modern database systems exploit commonalities in the structure of data to gain
efficiency but also allow for weakly structured data and for data whose formats are
highly variable. As a result, a database system is a large, complex software system whose
task is to manage a large, complex collection of data.

Managing complexity is challenging, not only in the management of data but in
any domain. Key to the management of complexity is the concept of abstraction. Ab-
straction allows a person to use a complex device or system without having to know the
details of how that device or system is constructed. A person is able, for example, to
drive a car by knowing how to operate its controls. However, the driver does not need
to know how the motor was built nor how it operates. All the driver needs to know is an
abstraction of what the motor does. Similarly, for a large, complex collection of data,
a database system provides a simpler, abstract view of the information so that users
and application programmers do not need to be aware of the underlying details of how
data are stored and organized. By providing a high level of abstraction, a database sys-
tem makes it possible for an enterprise to combine data of various types into a unified
repository of the information needed to run the enterprise.

Here are some representative applications:

• Enterprise Information

° Sales: For customer, product, and purchase information.

1.1 Database-System Applications 3

° Accounting: For payments, receipts, account balances, assets, and other ac-
counting information.

° Human resources: For information about employees, salaries, payroll taxes, and
benefits, and for generation of paychecks.

• Manufacturing: For management of the supply chain and for tracking production
of items in factories, inventories of items in warehouses and stores, and orders for
items.

• Banking and Finance

° Banking: For customer information, accounts, loans, and banking transactions.

° Credit card transactions: For purchases on credit cards and generation of
monthly statements.

° Finance: For storing information about holdings, sales, and purchases of finan-
cial instruments such as stocks and bonds; also for storing real-time market
data to enable online trading by customers and automated trading by the firm.

• Universities: For student information, course registrations, and grades (in addition
to standard enterprise information such as human resources and accounting).

• Airlines: For reservations and schedule information. Airlines were among the first
to use databases in a geographically distributed manner.

• Telecommunication: For keeping records of calls, texts, and data usage, generating
monthly bills, maintaining balances on prepaid calling cards, and storing informa-
tion about the communication networks.

• Web-based services

° Social-media: For keeping records of users, connections between users (such as
friend/follows information), posts made by users, rating/like information about
posts, etc.

° Online retailers: For keeping records of sales data and orders as for any retailer,
but also for tracking a user’s product views, search terms, etc., for the purpose
of identifying the best items to recommend to that user.

° Online advertisements: For keeping records of click history to enable targeted
advertisements, product suggestions, news articles, etc. People access such
databases every time they do a web search, make an online purchase, or ac-
cess a social-networking site.

• Document databases: For maintaining collections of new articles, patents, pub-
lished research papers, etc.

• Navigation systems: For maintaining the locations of varies places of interest along
with the exact routes of roads, train systems, buses, etc.

4 Chapter 1 Introduction

As this list illustrates, databases form an essential part not only of every enterprise but
also of a large part of a person’s daily activities.

The ways in which people interact with databases has changed over time. Early
databases were maintained as back-office systems with which users interacted via
printed reports and paper forms for input. As database systems became more sophisti-
cated, better languages were developed for programmers to use in interacting with the
data, along with user interfaces that allowed end users within the enterprise to query
and update data.

As the support for programmer interaction with databases improved, and computer
hardware performance increased even as hardware costs decreased, more sophisticated
applications emerged that brought database data into more direct contact not only with
end users within an enterprise but also with the general public. Whereas once bank
customers had to interact with a teller for every transaction, automated-teller machines
(ATMs) allowed direct customer interaction. Today, virtually every enterprise employs
web applications or mobile applications to allow its customers to interact directly with
the enterprise’s database, and, thus, with the enterprise itself.

The user, or customer, can focus on the product or service without being aware
of the details of the large database that makes the interaction possible. For instance,
when you read a social-media post, or access an online bookstore and browse a book or
music collection, you are accessing data stored in a database. When you enter an order
online, your order is stored in a database. When you access a bank web site and retrieve
your bank balance and transaction information, the information is retrieved from the
bank’s database system. When you access a web site, information about you may be
retrieved from a database to select which advertisements you should see. Almost every
interaction with a smartphone results in some sort of database access. Furthermore,
data about your web accesses may be stored in a database.

Thus, although user interfaces hide details of access to a database, and most people
are not even aware they are dealing with a database, accessing databases forms an
essential part of almost everyone’s life today.

Broadly speaking, there are two modes in which databases are used.

• The first mode is to support online transaction processing, where a large number
of users use the database, with each user retrieving relatively small amounts of
data, and performing small updates. This is the primary mode of use for the vast
majority of users of database applications such as those that we outlined earlier.

• The second mode is to support data analytics, that is, the processing of data to
draw conclusions, and infer rules or decision procedures, which are then used to
drive business decisions.

For example, banks need to decide whether to give a loan to a loan applicant,
online advertisers need to decide which advertisement to show to a particular user.
These tasks are addressed in two steps. First, data-analysis techniques attempt to
automatically discover rules and patterns from data and create predictive models.
These models take as input attributes (“features”) of individuals, and output pre-

1.2 Purpose of Database Systems 5

dictions such as likelihood of paying back a loan, or clicking on an advertisement,
which are then used to make the business decision.

As another example, manufacturers and retailers need to make decisions on
what items to manufacture or order in what quantities; these decisions are driven
significantly by techniques for analyzing past data, and predicting trends. The cost
of making wrong decisions can be very high, and organizations are therefore willing
to invest a lot of money to gather or purchase required data, and build systems that
can use the data to make accurate predictions.

The field of data mining combines knowledge-discovery techniques invented by
artificial intelligence researchers and statistical analysts with efficient implemen-
tation techniques that enable them to be used on extremely large databases.

1.2 Purpose of Database Systems

To understand the purpose of database systems, consider part of a university organiza-
tion that, among other data, keeps information about all instructors, students, depart-
ments, and course offerings. One way to keep the information on a computer is to store
it in operating-system files. To allow users to manipulate the information, the system
has a number of application programs that manipulate the files, including programs to:

• Add new students, instructors, and courses.

• Register students for courses and generate class rosters.

• Assign grades to students, compute grade point averages (GPA), and generate tran-
scripts.

Programmers develop these application programs to meet the needs of the university.
New application programs are added to the system as the need arises. For exam-

ple, suppose that a university decides to create a new major. As a result, the university
creates a new department and creates new permanent files (or adds information to
existing files) to record information about all the instructors in the department, stu-
dents in that major, course offerings, degree requirements, and so on. The university
may have to write new application programs to deal with rules specific to the new ma-
jor. New application programs may also have to be written to handle new rules in the
university. Thus, as time goes by, the system acquires more files and more application
programs.

This typical file-processing system is supported by a conventional operating system.
The system stores permanent records in various files, and it needs different application
programs to extract records from, and add records to, the appropriate files.

Keeping organizational information in a file-processing system has a number of
major disadvantages:

6 Chapter 1 Introduction

• Data redundancy and inconsistency. Since different programmers create the files
and application programs over a long period, the various files are likely to have
different structures, and the programs may be written in several programming lan-
guages. Moreover, the same information may be duplicated in several places (files).
For example, if a student has a double major (say, music and mathematics), the
address and telephone number of that student may appear in a file that consists of
student records of students in the Music department and in a file that consists of
student records of students in the Mathematics department. This redundancy leads
to higher storage and access cost. In addition, it may lead to data inconsistency;
that is, the various copies of the same data may no longer agree. For example, a
changed student address may be reflected in the Music department records but
not elsewhere in the system.

• Difficulty in accessing data. Suppose that one of the university clerks needs to
find out the names of all students who live within a particular postal-code area.
The clerk asks the data-processing department to generate such a list. Because
the designers of the original system did not anticipate this request, there is no
application program on hand to meet it. There is, however, an application program
to generate the list of all students. The university clerk now has two choices: either
obtain the list of all students and extract the needed information manually or ask
a programmer to write the necessary application program. Both alternatives are
obviously unsatisfactory. Suppose that such a program is written and that, several
days later, the same clerk needs to trim that list to include only those students who
have taken at least 60 credit hours. As expected, a program to generate such a list
does not exist. Again, the clerk has the preceding two options, neither of which is
satisfactory.

The point here is that conventional file-processing environments do not allow
needed data to be retrieved in a convenient and efficient manner. More responsive
data-retrieval systems are required for general use.

• Data isolation. Because data are scattered in various files, and files may be in dif-
ferent formats, writing new application programs to retrieve the appropriate data
is difficult.

• Integrity problems. The data values stored in the database must satisfy certain types
of consistency constraints. Suppose the university maintains an account for each
department, and records the balance amount in each account. Suppose also that
the university requires that the account balance of a department may never fall
below zero. Developers enforce these constraints in the system by adding appro-
priate code in the various application programs. However, when new constraints
are added, it is difficult to change the programs to enforce them. The problem is
compounded when constraints involve several data items from different files.

• Atomicity problems. A computer system, like any other device, is subject to failure.
In many applications, it is crucial that, if a failure occurs, the data be restored to the

1.2 Purpose of Database Systems 7

consistent state that existed prior to the failure. Consider a banking system with a
program to transfer $500 from account A to account B. If a system failure occurs
during the execution of the program, it is possible that the $500 was removed
from the balance of account A but was not credited to the balance of account
B, resulting in an inconsistent database state. Clearly, it is essential to database
consistency that either both the credit and debit occur, or that neither occur. That
is, the funds transfer must be atomic—it must happen in its entirety or not at all. It
is difficult to ensure atomicity in a conventional file-processing system.

• Concurrent-access anomalies. For the sake of overall performance of the system
and faster response, many systems allow multiple users to update the data simulta-
neously. Indeed, today, the largest internet retailers may have millions of accesses
per day to their data by shoppers. In such an environment, interaction of concur-
rent updates is possible and may result in inconsistent data. Consider account A,
with a balance of $10,000. If two bank clerks debit the account balance (by say
$500 and $100, respectively) of account A at almost exactly the same time, the re-
sult of the concurrent executions may leave the account balance in an incorrect (or
inconsistent) state. Suppose that the programs executing on behalf of each with-
drawal read the old balance, reduce that value by the amount being withdrawn, and
write the result back. If the two programs run concurrently, they may both read
the value $10,000, and write back $9500 and $9900, respectively. Depending on
which one writes the value last, the balance of account A may contain either $9500
or $9900, rather than the correct value of $9400. To guard against this possibility,
the system must maintain some form of supervision. But supervision is difficult
to provide because data may be accessed by many different application programs
that have not been coordinated previously.

As another example, suppose a registration program maintains a count of
students registered for a course in order to enforce limits on the number of students
registered. When a student registers, the program reads the current count for the
courses, verifies that the count is not already at the limit, adds one to the count, and
stores the count back in the database. Suppose two students register concurrently,
with the count at 39. The two program executions may both read the value 39, and
both would then write back 40, leading to an incorrect increase of only 1, even
though two students successfully registered for the course and the count should
be 41. Furthermore, suppose the course registration limit was 40; in the above
case both students would be able to register, leading to a violation of the limit of
40 students.

• Security problems. Not every user of the database system should be able to access
all the data. For example, in a university, payroll personnel need to see only that
part of the database that has financial information. They do not need access to
information about academic records. But since application programs are added to
the file-processing system in an ad hoc manner, enforcing such security constraints
is difficult.

8 Chapter 1 Introduction

These difficulties, among others, prompted both the initial development of
database systems and the transition of file-based applications to database systems, back
in the 1960s and 1970s.

In what follows, we shall see the concepts and algorithms that enable database
systems to solve the problems with file-processing systems. In most of this book, we use
a university organization as a running example of a typical data-processing application.

1.3 View of Data

A database system is a collection of interrelated data and a set of programs that allow
users to access and modify these data. A major purpose of a database system is to
provide users with an abstract view of the data. That is, the system hides certain details
of how the data are stored and maintained.

1.3.1 Data Models

Underlying the structure of a database is the data model: a collection of conceptual tools
for describing data, data relationships, data semantics, and consistency constraints.

There are a number of different data models that we shall cover in the text. The
data models can be classified into four different categories:

• Relational Model. The relational model uses a collection of tables to represent both
data and the relationships among those data. Each table has multiple columns, and
each column has a unique name. Tables are also known as relations. The relational
model is an example of a record-based model. Record-based models are so named
because the database is structured in fixed-format records of several types. Each
table contains records of a particular type. Each record type defines a fixed number
of fields, or attributes. The columns of the table correspond to the attributes of the
record type. The relational data model is the most widely used data model, and
a vast majority of current database systems are based on the relational model.
Chapter 2 and Chapter 7 cover the relational model in detail.

• Entity-Relationship Model. The entity-relationship (E-R) data model uses a collec-
tion of basic objects, called entities, and relationships among these objects. An en-
tity is a “thing” or “object” in the real world that is distinguishable from other
objects. The entity-relationship model is widely used in database design. Chapter
6 explores it in detail.

• Semi-structured Data Model. The semi-structured data model permits the specifi-
cation of data where individual data items of the same type may have different
sets of attributes. This is in contrast to the data models mentioned earlier, where
every data item of a particular type must have the same set of attributes. JSON and
Extensible Markup Language (XML) are widely used semi-structured data represen-
tations. Semi-structured data models are explored in detail in Chapter 8.

1.3 View of Data 9

• Object-Based Data Model. Object-oriented programming (especially in Java, C++,
or C#) has become the dominant software-development methodology. This led
initially to the development of a distinct object-oriented data model, but today the
concept of objects is well integrated into relational databases. Standards exist to
store objects in relational tables. Database systems allow procedures to be stored
in the database system and executed by the database system. This can be seen as
extending the relational model with notions of encapsulation, methods, and object
identity. Object-based data models are summarized in Chapter 8.

A large portion of this text is focused on the relational model because it serves as
the foundation for most database applications.

1.3.2 Relational Data Model

In the relational model, data are represented in the form of tables. Each table has mul-
tiple columns, and each column has a unique name. Each row of the table represents
one piece of information. Figure 1.1 presents a sample relational database comprising
two tables: one shows details of university instructors and the other shows details of
the various university departments.

The first table, the instructor table, shows, for example, that an instructor named
Einstein with ID 22222 is a member of the Physics department and has an annual
salary of $95,000. The second table, department, shows, for example, that the Biology
department is located in the Watson building and has a budget of $90,000. Of course,
a real-world university would have many more departments and instructors. We use
small tables in the text to illustrate concepts. A larger example for the same schema is
available online.

1.3.3 Data Abstraction

For the system to be usable, it must retrieve data efficiently. The need for efficiency has
led database system developers to use complex data structures to represent data in the
database. Since many database-system users are not computer trained, developers hide
the complexity from users through several levels of data abstraction, to simplify users’
interactions with the system:

• Physical level. The lowest level of abstraction describes how the data are actually
stored. The physical level describes complex low-level data structures in detail.

• Logical level. The next-higher level of abstraction describes what data are stored
in the database, and what relationships exist among those data. The logical level
thus describes the entire database in terms of a small number of relatively simple
structures. Although implementation of the simple structures at the logical level
may involve complex physical-level structures, the user of the logical level does not
need to be aware of this complexity. This is referred to as physical data indepen-

